Abstract

Poly(ADP-ribose) (PAR) is a polymer synthesized by poly(ADP-ribose) polymerases (PARPs) and metabolized into free adenosine diphosphate (ADP)-ribose units by poly(ADP-ribose) glycohydrolase (PARG). Perturbations in PAR synthesis have been shown to play a key role in brain disorders including postischemic brain damage. A single parg gene but two PARG isoforms (110 and 60 kDa) have been detected in mouse cells. Complete suppression of parg gene causes early embryonic lethality, whereas mice selectively lacking the 110 kDa PARG isoform (PARG(110)(-/-)) develop normally. We used PARG(110)(-/-) mice to evaluate the importance of PAR catabolism to postischemic brain damage. Poly(ADP-ribose) contents were higher in the brain tissue of PARG(110)(-/-) than PARG(110)(+/+) mice, both under basal conditions and after PARP activation. Distal middle cerebral artery occlusion caused higher increase of brain PAR levels and larger infarct volumes in PARG(110)(-/-) mice than in wild-type counterparts. Of note, the brain of PARG(110)(-/-) mice showed reduced heat-shock protein (HSP)-70 and increased cyclooxygenase-2 expression under both control and ischemic conditions. No differences were detected in brain expression/activation of procaspase-3, PARP-1, Akt, HSP-25 and interleukin-1beta. Our findings show that PAR accumulation worsens ischemic brain injury, and highlight the therapeutic potential of strategies capable of maintaining PAR homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.