Abstract

BackgroundPoly(4-hydroxybutyrate) (P4HB), belonging to the family of bacterial polyhydroxyalkanoates (PHAs), is a strong, flexible and absorbable material which has a large variety of medical applications like tissue engineering and drug delivery. For efficient production of P4HB recombinant Escherichia coli has been employed. It was previously found that the P4HB synthesis is co-related with the cell growth. In this study, we aimed to investigate the physiology of P4HB synthesis, and to reduce the total production cost by using cheap and widely available xylose as the growth substrate and sodium 4-hydroxybutyrate (Na-4HB) as the precursor for P4HB synthesis.ResultsSix different E. coli strains which are able to utilize xylose as carbon source were compared for their ability to accumulate P4HB. E. coli JM109 was found to be the best strain regarding the specific growth rate and the P4HB content. The effect of growth conditions such as temperature and physiological stage of Na-4HB addition on P4HB synthesis was also studied in E. coli JM109 recombinant in batch culture. Under the tested conditions, a cellular P4HB content in the range of 58 to 70% (w w-1) and P4HB concentrations in the range of 2.76 to 4.33 g L-1 were obtained with a conversion yield (YP4HB/Na-4HB) of 92% w w-1 in single stage batch cultures. Interestingly, three phases were identified during P4HB production: the “growth phase”, in which the cells grew exponentially, the “accumulation phase”, in which the exponential cell growth stopped while P4HB was accumulated exponentially, and the “stagnation phase”, in which the P4HB accumulation stopped and the total biomass remained constant.ConclusionsP4HB synthesis was found to be separated from the cell growth, i.e. P4HB synthesis mainly took place after the end of the exponential cell growth. High conversion rate and P4HB contents from xylose and precursor were achieved here by simple batch culture, which was only possible previously through fed-batch high cell density cultures with glucose.

Highlights

  • Poly(4-hydroxybutyrate) (P4HB), belonging to the family of bacterial polyhydroxyalkanoates (PHAs), is a strong, flexible and absorbable material which has a large variety of medical applications like tissue engineering and drug delivery

  • Comparison of different E. coli recombinants for and influence of 4HB concentrations on P4HB production Six different E. coli strains were transformed with plasmid pKSSE5.3 carrying the necessary genes for P4HB synthesis, namely a PHA synthase gene from R. eutropha and a 4-hydroxybutyric acid-coenzyme A transferase gene from C. kluyveri

  • Specific growth rates of DH5α and XL1-Blue recombinants were much lower on xylose than on glucose, and the P4HB content in the range of 11% to 18% (w w-1) was measured during growth on both sugars

Read more

Summary

Introduction

Poly(4-hydroxybutyrate) (P4HB), belonging to the family of bacterial polyhydroxyalkanoates (PHAs), is a strong, flexible and absorbable material which has a large variety of medical applications like tissue engineering and drug delivery. P4HB biosynthesis has been studied for about 20 years and it was, and still is, the first and only PHA-based product approved by the FDA as an absorbable suture for clinical application. It is a strong, flexible thermoplastic material that can be processed to scaffolds, heart valves or cardiovascular tissue supports [5]. To reduce the cost of the carbon source used for large scale P4HB production, agricultural derived feedstock such as processed hemicelluloses may be employed as a co-substrate to produce the bacterial biomass

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call