Abstract
To provide 4-hydroxybutyryl-CoA for poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from glutamate in Escherichia coli, an acetyl-CoA:4-hydroxybutyrate CoA transferase from Clostridium kluyveri, a 4-hydroxybutyrate dehydrogenase from Ralstonia eutropha, a gamma-aminobutyrate:2-ketoglutarate transaminase from Escherichia coli, and glutamate decarboxylases from Arabidopsis thaliana or E. coli were cloned and functionality tested by expression of single genes in E. coli to verify enzymatic activity, and uniquely assembled as operons under the control of the lac promoter. These operons were independently transformed into E. coli CT101 harboring the runaway replication vector pJM9238 for polyhydroxyalkanoate (PHA) production. Plasmid pJM9238 contains the PHA biosynthetic operon of R. eutropha under tac promoter control. Polyhydroxyalkanoate formation was monitored by nuclear magnetic resonance (NMR) spectroscopic analysis of the chloroform extracted and ethanol precipitated polyesters. Functionality of the biosynthetic pathway for copolymer production was demonstrated through feeding experiments using various carbon sources that supplied different precursors within the 4HB-CoA biosynthetic pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.