Abstract

We successfully fabricated highly stable pentacene-based bottom-contact organic field-effect transistors (OFETs) with good charge injection properties at the electrode/organic semiconductor interface, obtained by optimizing the composition of solution-processed (poly(3,4-ethylenedioxythiophene):polystyrene sulfonate):polytetrafluoroethylene ((PEDOT:PSS):PTFE)-treated Au source/drain (S/D) electrodes. The (PEDOT:PSS):PTFE layer was deposited on the Au layer by spin-coating a mixture solution. The work function of the electrode increased from 4.84 to 5.21 eV as the PTFE concentration increased, accompanied by an interface dipole at the electrode surface. The optimized (PEDOT:PSS):PTFE (0.95:0.05)-treated electrodes significantly reduced the charge injection barrier at the electrode/semiconductor interface to achieve efficient charge transfer in the OFETs. Bottom-contact OFETs prepared with the optimized (PEDOT:PSS):PTFE-treated S/D electrodes had a field-effect mobility of 0.16 cm2/(V·s), which exceeded tha...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.