Abstract
Poly(3,4-ethylenedioxythiophene)s are the conducting polymers (CP) with the biggest prospects in the field of bioelectronics due to their combination of characteristics (conductivity, stability, transparency and biocompatibility). The gold standard material is the commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). However, in order to well connect the two fields of biology and electronics, PEDOT:PSS presents some limitations associated with its low (bio)functionality. In this review, we provide an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics. First, we present a detailed analysis of the different synthetic routes to (bio)functional dioxythiophene monomer/polymer derivatives. Second, we focus on the preparation of PEDOT dispersions using different biopolymers and biomolecules as dopants and stabilizers. To finish, we review the applications of innovative PEDOT-type materials such as biocompatible conducting polymer layers, conducting hydrogels, biosensors, selective detachment of cells, scaffolds for tissue engineering, electrodes for electrophysiology, implantable electrodes, stimulation of neuronal cells or pan-bio electronics.
Highlights
Conductive polymers are of great interest in the field of bioelectronics as materials that can improve the interface between electronics and biology
PEDOT:PSS is widely used in the field of organic electronics as transparent conductive oxides (TCO), and as a hole-conducting layer or electrochromic layer in a variety of devices from organic light-emitting diodes (OLEDs) and organic photovoltaic devices (OPVs) [3,4] to electrochromics [5,6]
The commercially available PEDOT:PSS has shown great promise for bioelectronics, in order to broaden the spectrum of applications, a functionalization of the monomers or the incorporation of biological active dopants is essential
Summary
Conductive polymers are of great interest in the field of bioelectronics as materials that can improve the interface between electronics and biology. The biotic/abiotic interface for interfacing with live cells can be improved by the incorporation of biological molecules such as nucleotides or proteins for functionality, e.g., for sensing. In this way, the biofunctionalized conductive polymer can enhance their ultimate properties such as biocompatibility and adhesion, and could help to reduce the inflammatory response of a device in living tissue. REVIEW has been devoted to design innovative poly(dioxythiophene) polymers containing different functional electronics, PEDOT:PSS presents some limitations, mostly due to its low biofunctionality and groups for improved biocompatibility [16,17]. We Ethylenedioxythiophene summarize recent advances in the design of innovative conducting
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.