Abstract

AbstractPoly(2,5‐dimethoxyaniline) (PDMA) films were electrochemically synthesized on mild steel from an aqueous oxalic acid solution using galvanostatic mode. These films were characterized by potential–time curve, UV‐visible absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The enzyme glucose oxidase (GOx) was entrapped into the PDMA film by a physical adsorption method. The resulting PDMA–GOx films were characterized by UV‐visible absorption spectroscopy, FTIR, and SEM. The amperometric response of the PDMA–GOx films was measured as a function of glucose concentration in phosphate buffer solution (pH 7.3). The PDMA–GOx films exhibit a fast and linear amperometric response in the range of 2–20 mM glucose. The maximum current density and Michaelis–Menten constant of PDMA/GOx films are found to be ∼483 μA/cm2 and 1.12 mM, respectively. The shelf stability and thermal stability of these films were also investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.