Abstract
Living anionic polymerization of acrylates is challenging due to intrinsic side reactions including backbiting reactions of propagating enolate anions and aggregation of active chain ends. In this study, the controlled synthesis of poly(1-adamatyl acrylate) (PAdA) was performed successfully for the first time via living anionic polymerization through investigation of the initiation systems of sec-butyllithium/diphenylethylene/lithium chloride (sec-BuLi/DPE/LiCl), diphenylmethylpotassium/diethylzinc (DPMK/Et2Zn), and sodium naphthalenide/dipenylethylene/diethylzinc (Na-Naph/DPE/Et2Zn) in tetrahydrofuran at −78 °C using custom glass-blowing and high-vacuum techniques. PAdA synthesized via anionic polymerization using DPMK with a large excess (more than 40-fold to DPMK) of Et2Zn as the ligand exhibited predicted molecular weights from 4.3 to 71.8 kg/mol and polydispersity indices of around 1.10. In addition, the produced PAdAs exhibit a low level of isotactic content (mm triads of 2.1%). The block copolymers of AdA and methyl methacrylate (MMA) were obtained by sequential anionic polymerization, and the distinct living property of PAdA over other acrylates was demonstrated based on the observation that the resulting PAdA-b-PMMA block copolymers were formed with no residual PAdA homopolymer. The PAdA homopolymers exhibit a very high glass transition temperature (133 °C) and outstanding thermal stability (Td: 376 °C) as compared to other acrylic polymers such as poly(tert-butyl acrylate) and poly(methyl acrylate). These merits make PAdA a promising candidate for acrylic-based thermoplastic elastomers with high upper service temperature and enhanced mechanical strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.