Abstract

Solid-state Li metal batteries (SSLMBs) are promising solutions for the next-generation energy storage devices with high energy densities and safety. Accordingly, the advanced solid-state electrolytes are further needed to address the challenges-low ionic conductivity, poor interfacial compatibility and uncontrollably Li dendrites, boosting the electrochemical and safety performances of SSLMBs. Herein, a “flexible and rigid” strategy is proposed to enhance the electrochemical and mechanical properties of polyethylene oxide (PEO)-based electrolytes. Specifically, the flexible poly-1,3-dioxolane (poly-DOL) and rigid graphitic carbon nitride (g-C3N4) are coordinated by a coupling reaction to prepare g-C3N4-poly-DOL, which is further employed as the filler for the PEO matrix to fabricate a composite polymer electrolyte g-C3N4-pDOL-PEO. The flexible poly-DOL and rigid g-C3N4 together endow the PEO-based electrolyte with good interfacial stability, high ion-conductivity and strong mechanical strength. Consequently, the Li/g-C3N4-pDOL-PEO/LiFePO4 cell delivers high cyclability with a capacity retention ratio of 89.7 % after 150 cycles and an average Coulombic efficiency over 99.9 %, and, the Li/g-C3N4-pDOL-PEO/Li cell can stably cycle beyond 300 h at 0.2 mAh cm−2 with small polarization (13 mV). The “flexible and rigid” strategy coupling the polymer with the filler provides an effective electrolyte design for high-performance SSLMBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.