Abstract

The commercial production of multifunctional, biocompatible, and biodegradable biopolymers such as poly-γ-glutamic acid via microbial fermentation requires the development of simple and cheap methods for mass production. This study optimized the poly-γ-glutamic acid production of Bacillus licheniformis ATCC 9945a in several steps. At first, the most critical components of the culture medium, including l-glutamic acid, citric acid, and glycerol, were selected by screening nine factors through the Plackett-Burman experimental design and then were optimized using the response surface method and the central composite design algorithm. Under optimal conditions, the production of poly-γ-glutamic acid increased by more than 4.2 times from 11.2 to 47.2g/L. This is one of the highest production rates of this strain in submerged batch fermentation reported so far using the optimized medium compared to the conventional base medium. A novel and efficient sudden pulse feeding strategy (achieved by a novel one-factorial statistical technique) of l-glutamic acid to the optimized medium increased biopolymer production from 47.2 to 66.1g/L, the highest value reported in published literature with this strain. This simple, reproducible, and cheap fermentation process can considerably enhance the commercial applications of the poly-γ-glutamic acid synthesized by B. licheniformis ATCC 9945a .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call