Abstract
The active targeting strategy has achieved inspiring progress for drug accumulation in tumor therapy; however, the insufficient expression level of many potential receptors poses challenges for drug delivery. Poly-γ-glutamic acid (γ-pGluA), a naturally occurring anionic biopolymer, showed high affinity with tumor-associated gamma-glutamyl transpeptidase (GGT), which localized on the cell surface and exhibited intracellular redox homeostasis-dependent expression pattern; thus, GGT was utilized for mediating endocytosis of nanoparticles. Herein, GGT-targeting nanopolyplexes (γ-pGluA-CSO@Fe3+, PCFN) consisting of cationic chitosan and GGT-targeting γ-pGluA blended with iron ion were constructed to load reactive oxygen species-induced menadione (MA) and doxorubicin, which were utilized to investigate the mechanism of GGT up-regulation. Briefly, the pretreated PCFN/MA induced an intracellular oxidative stress environment, which facilitated adjusted up-regulated GGT expression and boosted tumor targeting. Subsequently, the destroyed redox homeostasis sensitized tumors for synergistic therapy. The innovative strategy of augmenting active targeting by disturbing intracellular redox homeostasis offers insight for the application of γ-pGluA-derived nanopolyplexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.