Abstract

To conveniently monitor bioactive cysteine (Cys) and Fe2+ in practice, a kind of poly-β-cyclodextrin strengthen praseodymium oxide (Pr6O11) porous oxidase mimic (p-β-CD@Pr6O11) was constructed by virtue of the strong coordination between nano Pr6O11 and poly-β-cyclodextrin substrate. After its microstructure and physicochemical property were characterized in detail, it was noted that porous p-β-CD@Pr6O11 exhibited excellent enzyme-like catalytic activity to accelerate the oxidation of 3,3',5,5,'-tetramethylbanzidine (TMB) and 2,2'-azinobis (3-ethylbenzo-thiazoline-6-sulfonic acid) ammonium salt (ABTS) with significant color-enhancement effect in the air. Based on the signal amplification, trace Cys could exclusively deteriorate the UV-vis absorbance at 653 nm of p-β-CD@Pr6O11-TMB and Fe2+ alter the one at 729 nm of p-β-CD@Pr6O11-ABTS with visual color changes. Under the optimized conditions, the proposed p-β-CD@Pr6O11-TMB and p-β-CD@Pr6O11-ABTS systems were successfully applied for dual-channel monitoring of Cys in Cys capsules and fetal bovine serum and Fe2+ in agricultural products with quite low detection limits, i.e., 7.8×10-9 mol·L-1 for Cys and 6.93×10-8 mol·L-1 (S/N=3) for Fe2+, respectively. The synergetic-enhancement detection mechanisms to Cys and Fe2+ were also proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call