Abstract

The modulus−volume fraction relationship for a poly(ε-caprolactone)−montmorillonite nanocomposite follows composite materials theory provided the clay volume fraction is correctly calculated. Thus, for interpretation of mechanical properties, nanocomposites do not have to be treated as a separate class of material. The tensile modulus of biodegradable poly(ε-caprolactone) was increased by 50% at 8 wt % clay addition (as corrected for surfactant), but the more dramatic improvement was in tensile elongation at break which increased from 165% to 550% for additions of up to 10 wt % clay. Poly(ε-caprolactone) nanocomposites with various clay volume fractions were produced with two organo-modified montmorillonites. Untreated montmorillonite was used as an experimental control to compare the properties with a conventional composite over the same clay volume fraction range, The composites were confirmed and characterized by XRD, DSC, NMR, and TEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.