Abstract

We have previously characterized an EMS-induced allele of the bubR1 gene (bubR1D1326N) that separates the two functions of BubR1, causing meiotic nondisjunction but retaining spindle assembly checkpoint activity during somatic cell division in Drosophila melanogaster. Using this allele, we demonstrate that bubR1 meiotic nondisjunction is dosage sensitive, occurs for both exchange and nonexchange homologous chromosomes, and is associated with decreased maintenance of sister chromatid cohesion and of the synaptonemal complex during prophase I progression. We took advantage of these features to perform a genetic screen designed to identify third chromosome deficiencies having a dominant effect on bubR1D1326N/bubR1rev1 meiotic phenotypes. We tested 65 deficiencies covering 60% of the third chromosome euchromatin. Among them, we characterized 24 deficiencies having a dominant effect on bubR1D1326N/bubR1rev1 meiotic phenotypes that we classified in two groups: (1) suppressor of nondisjunction and (2) enhancer of nondisjunction. Among these 24 deficiencies, our results show that deficiencies uncovering the polo locus act as suppressor of bubR1 nondisjunction by delaying meiotic prophase I progression and restoring chiasmata formation as observed by the loading of the condensin subunit SMC2. Furthermore, we identified two deficiencies inducing a lethal phenotype during embryonic development and thus affecting BubR1 kinase activity in somatic cells and one deficiency causing female sterility. Overall, our genetic screening strategy proved to be highly sensitive for the identification of modifiers of BubR1 kinase activity in both meiosis and mitosis.

Highlights

  • We have previously characterized an EMS-induced allele of the bubR1 gene that separates the two functions of BubR1, causing meiotic nondisjunction but retaining spindle assembly checkpoint activity during somatic cell division in Drosophila melanogaster

  • In contrast to mitosis, where BubR1 has an important role in controlling the metaphase-anaphase transition, it was shown that MAD3/BubR1 has an essential and conserved function during prophase I progression in meiosis

  • In a first approach, we consider that a given third chromosome deficiency has an effect on bubR1 X NDJ if the frequency is below 20.95% or above 30.69% of the control values, and if the given deficiency shows the same effect when compared to the control for its specific experimental round

Read more

Summary

Introduction

We have previously characterized an EMS-induced allele of the bubR1 gene (bubR1D1326N) that separates the two functions of BubR1, causing meiotic nondisjunction but retaining spindle assembly checkpoint activity during somatic cell division in Drosophila melanogaster. Using this allele, we demonstrate that bubR1 meiotic nondisjunction is dosage sensitive, occurs for both exchange and nonexchange homologous chromosomes, and is associated with decreased maintenance of sister chromatid cohesion and of the synaptonemal complex during prophase I progression. We identified one deficiency that causes female sterility and two deficiencies affecting BubR1 kinase activity during embryonic development and somatic cell cycle progression, indicating that other pathways can complement BubR1 kinase activity in an otherwise wild-type genetic background

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.