Abstract

The poloidal electric field generated by electron-cyclotron resonance heating is investigated for a tokamak plasma in the collisionless regime. This poloidal electric field is calculated by solving an adjoint equation to the linearized Fokker-Planck equation with a quasi-linear diffusion term. It is found from this calculation that the magnitude and the sign of the poloidal electric field depend strongly on the values of the inverse aspect ratio, the poloidal angle of the absorption point, the parallel velocity of resonant electrons normalized by the thermal velocity, and the strength of the relativistic correction to the resonance condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.