Abstract

It has been proposed that the E vector x B vector/B/sup 2/ drift arising from an externally applied electric field could be used in a tokamak or other toroidal device to remove plasma and impurities from the region near the wall and to reduce the amount of plasma striking the wall, either assisting or replacing a conventional magnetic field divertor. A poloidal magnetic divertor (without pumping chamber) was added to the Wisconsin Levitated Toroidal Octupole, and the octupole was operated with a tokamak-like magnetic field configuration (q = 0.7). A radial electric field was applied in the scrape-off zone, causing an E vector x B vector/B/sup 2/ drift with a large poloidal component. This reduced plasma flux reaching the wall of the toroid by up to a factor of 5 beyond the effect of the magnetic divertor, for divertor configurations with both high and low magnetic mirror ratios, in good agreement with a simple theoretical model. Plasma density and density scale length were also reduced in the scrape-off zone, in qualitative agreement with the model. This was not accompanied by any new instabilities in the scrape-off zone, nor by any appreciable degradation of confinement of the central plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.