Abstract
Accurate segregation of chromosomes is critical to ensure that each daughter cell receives the full genetic complement. Maintenance of cohesion between sister chromatids, especially at centromeres, is required to segregate chromosomes precisely during mitosis and meiosis. The Drosophila protein MEI-S332, the founding member of a conserved protein family, is essential in meiosis for maintaining cohesion at centromeres until sister chromatids separate at the metaphase II/anaphase II transition. MEI-S332 localizes onto centromeres in prometaphase of mitosis or meiosis I, remaining until sister chromatids segregate. We elucidated a mechanism for controlling release of MEI-S332 from centromeres via phosphorylation by POLO kinase. We demonstrate that POLO antagonizes MEI-S332 cohesive function and that full POLO activity is needed to remove MEI-S332 from centromeres, yet this delocalization is not required for sister chromatid separation. POLO phosphorylates MEI-S332 in vitro, POLO and MEI-S332 bind each other, and mutation of POLO binding sites prevents MEI-S332 dissociation from centromeres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.