Abstract

Phthalate esters (PAEs) are widely used in the manufacturing of plastics, and their demands have grown rapidly, especially in China, which will lead to much more environmental pollution of PAEs. In this study, fourteen common PAEs in ambient air were investigated during non-typhoon and typhoon seasons in a mixed multi-functional area of Hangzhou, China. The average concentrations of ∑14 PAEs in gaseous and PM2.5-bound phase (G-PAEs and P-PAEs) were 2317 ng/m3 and 128 ng/m3 during sampling period, while the mean concentrations of total PAEs in non-typhoon and typhoon seasons were 2412 ng/m3 and 2183 ng/m3, respectively. Bis(2-ethylhexyl)phthalate (DEHP) was the most abundant one, averagely accounting for 63.2% of G-PAEs and 88.3% of P-PAEs. Relative humidity showed a significant negative correlation with short-chain PAE (r = - 0.479, P < 0.01) and long-chain PAE (r = - 0.305, P < 0.05) concentrations in non-typhoon and typhoon seasons, and O3 could degrade G-PAEs through photoreaction. Source identification by the positive matrix factorization model and conditional probability function indicated that P-PAEs were mainly from the release from indoor environment (43%), PVC source (34%), construction source (12%), and industry source (11%). Air mass transport from both inland and oceans affected the PAE pollution in non-typhoon season, while its long-range transport from oceans took an important role in typhoon season. The daily inhalation intakes of PAEs for infants, teenagers, and adults were estimated, which showed that infants experienced the highest exposure risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call