Abstract

In order to explore the characteristics of water-soluble inorganic ions (WSIIs) in the atmosphere of Wanzhou, a small mountainous city in Chongqing, four representative seasonal PM2.5 samples and gaseous precursors (SO2 and NO2) were collected from April 2016 to January 2017. The WSIIs (including Cl−, NO3−, SO42−, Na+, NH4 +, K+, Mg2+, and Ca2+) were analyzed by ion chromatography. During the sampling period, daily PM2.5 concentration varied from 3.47 to 156.30 μg·m−3, with an average value of 33.38 μg·m−3, which was lower than the second-level annual limit of NAAQS-China. WSIIs accounted for 55.6% of PM2.5, and 83.1% of them were secondary inorganic ions (SNA, including SO42−, NO3−, and NH4+). The seasonal variations of PM2.5 and WSIIs were similar, with the minimum in summer and the maximum in winter. PM2.5 samples were the most alkaline in summer, weakly alkaline in spring and winter, and close to neutral in fall. The annual average ratio of NO3−/SO42− was 0.54, indicating predominant stationary sources for SNA in Wanzhou. NO3−, SO42−, and NH4+ mainly existed in the form of (NH4)2SO4 and NH4NO3. The results of the principal component analysis (PCA) showed that the major sources of WSIIs in Wanzhou were the mixture of secondary inorganic aerosols, coal combustion, automobile exhaust (49.53%), dust (23.16%), and agriculture activities (9.68%). The results of the backward trajectory analysis showed that aerosol pollution in Wanzhou was mainly caused by local emissions. The enhanced formation of SNA through homogeneous and heterogeneous reactions contributed to the winter PM2.5 pollution event in Wanzhou.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.