Abstract
Exposure to coplanar polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) can adversely affect fish embryonic development, induce expression of cytochrome P4501A (CYP1A), and increase reactive oxygen species (ROS) production, effects believed to be mediated by the aryl hydrocarbon receptor (AHR). Killifish (Fundulus heteroclitus) populations in New Bedford Harbor, Massachusetts, USA (NBH) and Newark Bay, New Jersey, USA (NB) are generationally exposed to coplanar PCBs and PAHs and have developed resistance to PCB mediated induction of CYP1A. We hypothesized that fish resistant to CYP1A induction would also exhibit resistance to PCB and PAH induced ROS production and teratogenesis. Killifish embryos from two contaminated (NB, NBH) and two reference-site populations were exposed to vehicle or 3,3'4,4'5-pentachlorobiphenyl (PCB126) or 3-methylcholanthrene (3-MC) and evaluated for in ovo CYP1A activity, heart deformities, and ROS production. Both chemicals significantly increased in ovo ethoxyresorufin-O-deethylase (EROD) and ROS production in reference-site embryos. These chemicals provoked only moderate induction of in ovo EROD in NBH and NB embryos, and neither PCB126 nor 3-MC induced ROS production in these populations. Similarly, heart deformities were significantly induced by PCB126 in reference-site embryos, but had no significant effects on NB and NBH animals. These results indicate that fish resistant to CYP1A induction also exhibit decreased sensitivity to PCB126 and 3-MC-induced ROS production and teratogenesis. These findings further our understanding of toxicant resistance by demonstrating that reduced response to coplanar PCBs and PAHs extends beyond resistance to CYP1A induction to resistance to the physiological and teratogenic effects of these toxicants, responses that undoubtedly contribute to the increased survival of killifish inhabiting contaminated sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.