Abstract

A two-stage anoxic/oxic combined membrane bioreactor (A/O-A/O-MBR) was operated for 81 d to treat landfill leachate under different reflux ratios (R). The best performance was found under R = 150%, where the chemical oxygen demand (COD), ammonium (NH4+-N) and total nitrogen (TN) removal was 85.6%, 99.3%, and 80.7%, respectively. Particularly, the highest pollutant removal was achieved in the second-stage A/O, where the COD and TN removal capacity was 78.88 and 11.74 g/d, respectively. Meantime, DOM removal was 83.9%, where the removal of aromatic protein substances I and II, fulvic acids-like compounds, soluble microbial products and humic acids-like compounds was 93.4%, 86.4%, 72.0%, 86.6% and 59.4%, respectively. The gene functions of microbial community in the process showed that amoA, hao, nirK and nosZ, etc. were the core genes for nitrification and denitrification. The carbon source for denitrification might come from the conversion of refractory organic matters in landfill leachate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.