Abstract

BackgroundHyperlipidemia associated with obesity is closely related to the development of atherosclerosis. Both n-3 polyunsaturated fatty acids (PUFAs) and long-chain monounsaturated fatty acids (MUFAs; i.e., C20:1 and C22:1 isomers) supplementation modulate risk factors for metabolic syndrome via multiple mechanisms, including the restoration of impaired lipid metabolism. We therefore examined the effects of pollock oil, which contains a considerable amount of n-3 PUFAs as well as long-chain MUFAs, on plasma hyperlipidemia and hepatic steatosis in diet-induced obese mice.MethodsMale C57BL/6J mice (24-26 g) were divided into two groups (n = 10/group) and were fed a high-fat diet containing 32% lard (control group) or 17% lard plus 15% pollock oil (experimental group) for 6 weeks. For both groups, fat comprised 60% of the total caloric intake.ResultsAlthough body and liver masses for the two groups did not differ significantly, hepatic lipids concentrations (triglycerides and total cholesterols) were lower (P < 0.05) after pollock oil ingestion. After 2 weeks on the specified diets, plasma lipid levels (total cholesterol, LDL cholesterol, and triglycerides) significantly decreased (P < 0.05) in the experimental group compared with the control group, although plasma HDL cholesterol levels did not differ. At the end of 6 weeks, plasma adiponectin levels increased (P < 0.05), whereas plasma resistin and leptin levels decreased (P < 0.05) in the experimental mice. Increased levels of long-chain MUFAs and n-3 PUFAs in plasma, liver and adipose tissue by ingesting pollock oil were possibly correlated to these favorable changes. Expression of hepatic genes involved in cholesterol metabolism (SREBP2, HMGCR, and ApoB) and lipogenesis (SREPB1c, SCD-1, FAS, and Acacα) was suppressed in the experimental group, and may have favorably affected hyperlipidemia and hepatic steatosis induced by the high-fat diet.ConclusionsWe demonstrated that pollock oil supplementation effectively improved hyperlipidemia, attenuated hepatic steatosis, and downregulated the express of hepatic genes involved in cholesterol and lipid metabolism in mice with diet-induced obesity.

Highlights

  • Hyperlipidemia associated with obesity is closely related to the development of atherosclerosis

  • An increased intake of saturated fatty acids is pathogenic for coronary heart disease, numerous studies have demonstrated a protective effect of n-3 polyunsaturated fatty acids (PUFAs) through a variety of mechanisms, including reduction of triglycerides and very-low-density lipoproteins [4]

  • Given the health benefits of n-3 PUFAs and long-chain monounsaturated fatty acids (MUFAs), we examined the effect of dietary pollock oil on hyperlipidemia in mice with diet-induced dyslipidemia

Read more

Summary

Introduction

Hyperlipidemia associated with obesity is closely related to the development of atherosclerosis. Both n-3 polyunsaturated fatty acids (PUFAs) and long-chain monounsaturated fatty acids (MUFAs; i.e., C20:1 and C22:1 isomers) supplementation modulate risk factors for metabolic syndrome via multiple mechanisms, including the restoration of impaired lipid metabolism. We examined the effects of pollock oil, which contains a considerable amount of n-3 PUFAs as well as long-chain MUFAs, on plasma hyperlipidemia and hepatic steatosis in diet-induced obese mice. We have shown that marinederived long-chain monounsaturated fatty acids (MUFAs) (i.e., C20:1 and C22:1 isomers) modulate metabolic syndrome by restoring impaired glucose and lipid metabolism [5]. Given the health benefits of n-3 PUFAs and long-chain MUFAs, we examined the effect of dietary pollock oil on hyperlipidemia in mice with diet-induced dyslipidemia

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.