Abstract

In polling systems, $M \geq 2$ queues are visited by a single server in cyclic order. These systems model such diverse applications as token-ring communication networks and cyclic production systems. We study polling systems with exhaustive service and zero switchover (walk) times. Under standard heavy-traffic assumptions and scalings, the total unfinished work converges to a one-dimensional reflected Brownian motion, whereas the workloads of individual queues change at a rate that becomes infinite in the limit. Although it is impossible to obtain a multidimensional limit process in the usual sense, we obtain an "averaging principle" for the individual workloads. To illustrate the use of this principle, we calculate a heavy-traffic estimate of waiting times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.