Abstract

Many alpine plants are predominantly outcrossing, thus plant reproductive success is highly dependent on effectiveness of pollinators. How pollinators transfer pollen from one flower to another is of great interest in understanding the genetic structure in plant populations. We studied (1) the role and effectiveness of insect visitors for pollination, and (2) their contribution as pollen vectors for gene dispersal in a Rhododendron ferrugineum population. Various insect visitors were recorded, including Hymenoptera, Diptera, Coleoptera, and Lepidoptera. The most frequent and effective insects were honey bees and bumblebees. Muscid flies were considered as important pollinators, particularly due to their relatively high visitation rate. Syrphid flies, Formicidae, and Coleoptera were ineffective in transporting pollen, while the effectiveness of Lepidoptera and Empididae was negligible. A fluorescence labelling experiment revealed that pollen dispersal was restricted (0 - 2 m) in a dense R. ferrugineum stand and decreased in a leptokurtic fashion. This might lead to geitonogamous self-pollination that could explain the close relationship between individuals found in genetic studies of R. ferrugineum. However, some pollen grains may travel 40 - 45 m, which implies the occurrence of cross-pollination through the foraging activities of bumblebees and honey bees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call