Abstract
We define Pollicott-Ruelle resonances for geodesic flows on noncompact asymptotically hyperbolic negatively curved manifolds, as well as for more general open hyperbolic systems related to Axiom A flows. These resonances are the poles of the meromorphic continuation of the resolvent of the generator of the flow and they describe decay of classical correlations. As an application, we show that the Ruelle zeta function extends meromorphically to the entire complex plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.