Abstract

By a detailed ontogenetic study of Polemonium caeruleum pollen, tracing each stage of development at high TEM resolution, we aim to understand the establishment of the pollen wall and to unravel the mechanisms underlying sporoderm development. The main steps of exine ontogeny in Polemonium caeruleum, observed in the microspore periplasmic space, are spherical units, gradually transforming into columns, then to rod-like units (procolumellae), the appearance of the initial tectum, growth of columellae in height and tectum in thickness and initial sporopollenin accumulation on them, the appearance of the endexine lamellae and of dark-contrasted particles on the tectum, the appearance of a sponge-like layer and of the intine in aperture sites, the appearance of the foot layer on the base of the sponge-like layer and of spinules on the tectum, and massive sporopollenin accumulation. This sequence of developmental events fits well to the sequence of self-assembling micellar mesophases. This gives (together with earlier findings and experimental exine simulations) strong evidence that genome and self-assembly probably share control of exine formation. It is highly probable that self-assembly is an intrinsic instrument of evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call