Abstract

Pollination systems differ in pollen transfer efficiency, a variable that may influence the evolution of flower number. Here we apply a comparative approach to examine the link between pollen transfer efficiency and the evolution of inflorescence size in food and sexually deceptive orchids. We examined pollination performance in nine food-deceptive, and eight sexually deceptive orchids by recording pollen removal and deposition in the field. We calculated correlations between reproductive success and flower number (as a proxy for resources allocated during reproductive process), and directional selection differentials were estimated on flower number for four species. Results indicate that sexually deceptive species experience decreased pollen loss compared to food-deceptive species. Despite producing fewer flowers, sexually deceptive species attained levels of overall pollination success (through male and female function) similar to food-deceptive species. Furthermore, a positive correlation between flower number and pollination success was observed in food-deceptive species, but this correlation was not detected in sexually deceptive species. Directional selection differentials for flower number were significantly higher in food compared to sexually deceptive species. We suggest that pollination systems with more efficient pollen transfer and no correlation between pollination success and number of flowers produced, such as sexual deception, may allow the production of inflorescences with fewer flowers that permit the plant to allocate fewer resources to floral displays and, at the same time, limit transpiration. This strategy can be particularly important for ecological success in Mediterranean water-deprived habitats, and might explain the high frequency of sexually deceptive species in these specialised ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call