Abstract

1 Although fossil pollen from forest hollows (~ 5 m in diameter) is often interpreted as a record of stand-scale forest changes, this assumption has not previously been tested by comparing pollen percentages in modern sediment to vegetation from a range of sampling radii. I compared pollen in surface sediment with distance-weighted basal area of trees in radii from 10 to l00 m, to test a model (Sugita 1994) that predicts the 'relevant pollen source area' for forest hollows is 50-100 m, and that about 40 % of the pollen comes from trees growing within this radius. 2 Maximum likelihood estimates of pollen productivity, based on the relevant source area, are used to test for differences in species pollen productivity between a pinedominated region in north-western Wisconsin, and a hemlock-northern-hardwoodsdominated region of upper peninsula Michigan. 3 Likelihood function scores, which measure the goodness-of-fit of the pollen-vegetation relationship based on the maximum likelihood method, show that estimates of pollen productivity (ac) and relative background pollen loading (co) improve as radius of distance-weighted vegetation sampling increases from 10 to 50 m. There is little further improvement from 50 to lOOm. Linear regression analysis of pollen percentages on distance-weighted basal area also shows little improvement in pollenvegetation correlation when vegetation samples from beyond 50 m are included. Predictions of pollen percentages therefore are not improved by increasing the vegetation sampling radius beyond 50-100 m. These results support Sugita's (1994) model prediction and confirm that fossil pollen in hollows records stand-scale vegetation heterogeneity at a scale of 50-lOOm. 4 Estimates of background pollen (co) indicate that on average, only 40-50% of the pollen in forest hollows comes from trees growing within 50-lOOm of the hollow. However, this is sufficient to record the stand scale vegetation heterogeneity because larger areas of vegetation are recorded as homogeneous regional background, even in patchy vegetation. 5 Relative pollen productivity of three monospecific pollen taxa (red maple, sugar maple, basswood) is similar for two regions, supporting the implicit assumption in palynology that pollen productivity is a species-specific constant. Productivity estimates of birch are similar between regions, although yellow birch dominates in one region and paper birch in the other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.