Abstract

Understanding plant-insect interactions requires the uncovering of the host plant use of insect herbivores, but such information is scarce for most taxa, including nocturnal moth species, despite their vital role as herbivores and pollinators. In this study, we determined the plant species visited by an important moth species, Spodoptera exigua, by analyzing attached pollen on migratory individuals in Northeast China. Pollen grains were dislodged from 2334 S. exigua long-distance migrants captured between 2019 and 2021 on a small island in the center of the Bohai Strait, which serves as a seasonal migration pathway for this pest species, and 16.1% of the tested moths exhibited pollen contamination, primarily on the proboscis. Subsequently, 33 taxa from at least 23 plant families and 29 genera were identified using a combination of DNA barcoding and pollen morphology, primarily from the Angiosperm, Dicotyledoneae. Moreover, the sex, inter-annual, and seasonal differences in pollen adherence ratio and pollen taxa were revealed. Notably, compared to previously reported pollen types found on several other nocturnal moths, we found that almost all of the above 33 pollen taxa can be found in multiple nocturnal moth species, providing another important example of conspecific attraction. Additionally, we also discussed the indicative significance of the pollen present on the bodies of migratory individuals for determining their migratory route. Overall, by delineating the adult feeding and pollination behavior of S. exigua, we advanced our understanding of the interactions of the moths with their host plants, and its migration pattern, as well as facilitated the design of (area-wide) management strategies to preserve and optimize ecosystem services that they provide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.