Abstract

Pollen grains have the potential to be effective plant-based biorenewable fillers in polymer matrices due to their high modulus, strength, chemical stability, and unique nanoscale architectures. In this work, we present evidence for the effectiveness of pollen as a reinforcing filler in epoxy matrices, characterized as a function of pollen loading and surface treatment. Composites prepared with unmodified native defatted ragweed pollen (D) displayed decreased mechanical properties and increasing glass transition temperatures (Tg) with increasing pollen loading. A soft interphase was observed to form around native pollen that is likely due to incompletely cured epoxy, resulting in decreased mechanical properties. However, pollen treated via a common base-acid (BA) surface preparation was a load-bearing, toughening filler in epoxy composites, displaying simultaneously increased tensile strength (by 47%) and strain at break (by 70%), improving interfacial morphology (absence of soft interphase), and increasing Tg at 10 wt% pollen loading. Elastic modulus improves by 14% with 10 wt% BA pollen loading, and fitting of the modulus with the Halpin-Tsai and Counto models results in an estimated pollen exine modulus of 8 GPa, the first reported pollen modulus measurement from composite studies. Improvements in mechanical properties in BA pollen versus D pollen likely result due to crosslinks with the epoxy matrix due to the presence of protic functional groups (hydroxyls or carboxyls) on the BA surface. BA-treated ragweed pollen shows promise as a toughening filler for imparting higher strength to polymers without increasing mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call