Abstract

This paper presents the pollen assemblages from 108 surface sediment samples from 4 lakes (the Lake Daihai, Lake Hongjiannao, Lake Hulunnao and Lake Duikounao) in the monsoon fringe area of China. The herb pollen taxa Artemisia, Chenopodiaceae, Poaceae and Compositae are the major components of pollen assemblages of the 4 lakes and Pinus, Betula, Quercus, Ulmus, Populus, Ostryopsis and Elaeagnaceae are frequently presented, which reflect regional and local vegetation well. The mean similarity coefficients for samples from the Lake Daihai, Lake Hongjiannao, Lake Hulunnao and Lake Duikounao are 0.66 ± 0.17, 0.71 ± 0.11, 0.73 ± 0.12 and 0.67 ± 0.12 respectively, so pollen assemblages are relatively consistent in each lake, which shows that focusing and mixing effects have occurred before and after pollen deposition. However, pollen assemblages do differ between sampling sites in each lake. The largest difference is seen in the Lake Daihai, followed by the Lake Duikounao, Lake Hulunnao and Lake Hongjiannao (The mean Euclidean distance is 20.09 ± 11.11, 11.22 ± 3.64, 10.67 ± 4.03 and 8.44 ± 4.51 respectively). These differences are possibly caused by the differences of focusing and mixing effects, pollen source areas, drainage areas and regional vegetation compositions. The Lake Daihai and Lake Hongjiannao have water deeper than 5 m and strong re-suspension, focusing and mixing effects occur in the lakeshore and shallow water areas, where pollen concentrations are lower than in deeper lake areas. In the Lake Hulunnao and Lake Duikounao, with depths less than 5 m, re-suspension and mixing effects are obvious across the whole lake area, so pollen assemblages and pollen concentrations are more consistent among sampling sites in each lake. Comparison between the lake samples and samples from the inflowing river reveals that wind is primary pollen transportation force in the Lake Hongjiannao, where the consistency of pollen assemblage is conspicuous, while there is greater variation in lakes where pollen input is dominated by waterborne sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.