Abstract

This pilot study evaluates the surface roughness of monolithic zirconia crowns after chairside polishing by different dental practitioner groups. Four practitioner groups (group I: dental clinical students (n = 6); group II: dentists < 2 years post-qualification experience (n = 6); group III: dentists > 2 years post-qualification experience (n = 6) and group IV: dental technicians (n = 6)) were asked to polish two CAD/CAM-fabricated full-contour zirconia crowns (48 in total). A two-step zirconia polishing kit was used in both trials. The first trial (T1) was conducted without a time limitation. In the second trial (T2), the polish was restricted to 15 seconds for each polisher. Two blinded investigators (I1 and I2) analyzed the surface roughness (Ra) before and after polishing (Alicona measuring system). No statistically significant difference in surface roughness was found between the polishing results of the dental practitioner groups. Major difference in surface finish was achieved by dental technicians, with a median value of 25.4 nm (interquartile range 10.15–35.26 nm) for I1 in T1. The lowest difference was achieved by dental students, with a median value of Ra = 6.72 nm (interquartile range 4.7–17.9 nm) in T1. In T2, experienced dentists showed the highest difference in surface finish, with a median value of 41.35 nm (interquartile range 7.77–54.11). No significant correlation was found between polishing time and polishing results. The polishing of monolithic zirconium dioxide crowns can be performed with the present polishing set directly chairside after occlusal adjustment, regardless of the practitioner’s experience level.

Highlights

  • New digital technology and the growing aesthetic expectations of patients are responsible for the increasing progress in ceramic materials [1]

  • The polishing of monolithic zirconium dioxide crowns can be performed with the present polishing set directly chairside after occlusal adjustment, regardless of the practitioner’s experience level

  • Metal-ceramic restorations have been the gold standard for fixed partial dentures for the past several decades [2], but they have never been able to imitate the natural translucency of dental enamel [1,3,4]

Read more

Summary

Introduction

New digital technology and the growing aesthetic expectations of patients are responsible for the increasing progress in ceramic materials [1]. Metal-ceramic restorations have been the gold standard for fixed partial dentures for the past several decades [2], but they have never been able to imitate the natural translucency of dental enamel [1,3,4]. The range of indications for initial glass matrix ceramics was relatively small, limited to single tooth restorations [5]. The development of high-performance zirconium dioxide ceramics and the establishment of CAD/CAM (computer-aided design/computer-aided manufacturing) technology can compensate for this limitation and replace the conventional metal-ceramic restorations. Zirconia was introduced as an advanced technical ceramic in dentistry and the development of CAD/CAM technology allows for reproducible, rapid, and relatively cheap fabrication. With its high strength value, Y-TZP (yttria tetragonal zirconia polycrystals) zirconia restorations can fill the indication gaps of the pre-existing silicate ceramics and replace metal restorations [6,7,8].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call