Abstract

In inertial confinement fusion (ICF) experiments, high-density carbon (HDC) is being evaluated as an alternative to the current point-design ablator material (glow discharge plasma) due to its high density and optimal opacity, which leads to a higher energy efficiency and implosion stability. Chemical vapor deposition–coated HDC capsules have a near-perfect surface figure but a microscopically rough surface, so polishing is needed to achieve the required nanometer surface finish. Herein, HDC capsule polishing is investigated with modified four-cup-type polishing technology. The surface morphology, microstructures, and wall thicknesses of the polished capsules were examined by multiple techniques, such as an optical microscope, scanning electron microscope, X-ray radiography, and so on. The results show that the HDC capsules can be polished to a surface roughness less than 15 nm and a wall thickness nonuniformity of about 0.5 μm. The Raman spectra indicated that four-cup polishing had no obvious influence on the original surface crystallinity and phase composition of the HDC capsules. The crystallographic of the HDC capsules with different four-cup polishing times had no deterioration. This work plays an important role for the application of HDC capsules in ICF research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call