Abstract
Continuous action policy search is currently the focus of intensive research, driven both by the recent success of deep reinforcement learning algorithms and the emergence of competitors based on evolutionary algorithms. In this paper, we present a broad survey of policy search methods, providing a unified perspective on very different approaches, including also Bayesian Optimization and directed exploration methods. The main message of this overview is in the relationship between the families of methods, but we also outline some factors underlying sample efficiency properties of the various approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.