Abstract
An Hinfin suboptimal state feedback controller for constrained input systems is derived using the Hamilton-Jacobi-Isaacs (HJI) equation of a corresponding zero-sum game that uses a special quasi-norm to encode the constraints on the input. The unique saddle point in feedback strategy form is derived. Using policy iterations on both players, the HJI equation is broken into a sequence of differential equations linear in the cost for which closed-form solutions are easier to obtain. Policy iterations on the disturbance are shown to converge to the available storage function of the associated L2-gain dissipative dynamics. The resulting constrained optimal control feedback strategy has the largest domain of validity within which L2-performance for a given gamma is guaranteed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.