Abstract

Dynamic, heterogeneous and distributively owned resource environments present unique challenges to the problems of resource representation, allocation and management. Conventional resource management methods that rely on static models of resource allocation policy and behavior fail to address these challenges. We previously argued that Matchmaking provides an elegant and robust solution to resource management in such dynamic and federated environments. However, Matchmaking is limited by its purely bilateral formalism of matching a single customer with a single resource, precluding more advanced resource management services such as co-allocation. In this paper, we present Gangmatching, a multilateral extension to the Matchmaking model, and discuss the Gangmatching model and its associated implementation and performance issues in context of a real-world license management co-allocation problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.