Abstract

We use the mapping-phase high-altitude magnetic measurements provided by Mars Global Surveyor (MGS) between March 1999 and April 2003 to model nine relatively isolated magnetic anomalies of Mars. Each anomaly is modeled with an elliptical prism. Each component of the observed magnetic field is modeled independently using an elliptical prism in order to assess the reliability of the results and suppress non-crustal and nearby crustal source contaminations. The paleomagnetic pole positions are obtained from the magnetization vectors of the model source bodies. We clean the data by removing the bad tracks and then divide the entire data into two sets that are measured at different times. Applying covariance analysis in the Fourier domain to two maps of the same magnetic component that are derived from the two sets provides a means to extract the most common features of the maps. The quality of a model is evaluated and only good models are used in the final geophysical interpretation. Most poles that come from good models cluster in the Tharsis region, suggesting that Mars experienced polar motion since the magnetic source bodies were magnetized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.