Abstract
Using covariant expansions, recent work showed that pole skipping happens in general holographic theories with bosonic fields at frequencies i(lb − s)2πT, where lb is the highest integer spin in the theory and s takes all positive integer values. We revisit this formalism in theories with gauge symmetry and upgrade the pole-skipping condition so that it works without having to remove the gauge redundancy. We also extend the formalism by incorporating fermions with general spins and interactions and show that their presence generally leads to a separate tower of pole-skipping points at frequencies i(lf − s)2πT, lf being the highest half-integer spin in the theory and s again taking all positive integer values. We also demonstrate the practical value of this formalism using a selection of examples with spins 0,12\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\frac{1}{2} $$\\end{document}, 1,32\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\frac{3}{2} $$\\end{document}, 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.