Abstract

We study pole skipping in holographic conformal field theories dual to diffeomorphism invariant theories containing an arbitrary number of bosonic fields in the large N limit. Defining a weight to organize the bulk equations of motion, a set of general pole skipping conditions are derived. In particular, the frequencies simply follow from general covariance and weight matching. In the presence of higher-spin fields, we find that the imaginary frequency for the highest-weight pole skipping point equals the higher-spin Lyapunov exponent which lies outside of the chaos bound. Without higher-spin fields, we show that the energy density Green's function has its highest-weight pole skipping happening at a location related to the out-of-time-order correlator for arbitrary higher-derivative gravity, with a Lyapunov exponent saturating the chaos bound and a butterfly velocity matching that extracted from a shockwave calculation. We also suggest an explanation for this matching at the metric level by obtaining the on-shell shockwave solution from a regularized limit of the metric perturbation at the skipped pole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call