Abstract

Power system stability enhancement via robust optimum design of power system stabilizers (PSSs) and thyristor controlled series capacitor (TCSC)-based stabilizers is thoroughly investigated in this paper. The design problem of PSS and TCSC-based stabilizers is formulated as an optimization problem where a reinforcement learning automata-based optimization algorithm is applied to search for the optimal setting of the proposed PSS and CSC parameters. A pole placement based objective function is considered to shift the dominant system eigenvalues to the left in the s-plane. For evaluation of the effectiveness and robustness of the proposed stabilizers, their performances have been examined on a weakly connected power system subjected to different disturbances, loading conditions, and system parameter variations. The nonlinear simulation results and eigenvalues analysis demonstrate the high performance of the proposed stabilizers and their ability to provide efficient damping of low frequency oscillations. In addition, it is observed that the proposed CSC has greatly improved the voltage profile of system under severe disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.