Abstract

We investigate the photoinduced absorption (PIA) spectra of the prototypical donor-acceptor polymer [2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT) and its silicon bridged variant Si-PCPDTBT over a spectral range from 0.07 to 1.5 eV. Comparison between time-dependent density functional theory simulations of the electronic and vibrational transitions of singlet excitons, triplet excitons, polarons, and bipolarons with the experimental results proves that the observed features are due to positive polarons delocalized on the polymer chains. We find that the more crystalline Si-bridged variant gives rise to a red-shift in the transition energies, especially in the mid-infrared (MIR) spectral range and furthermore observe that the pristine polymers' responses depend on the excitation energy. Blending with PCBM, on the other hand, leads to excitation-independent PIA spectra. By computing the response properties of molecular aggregates, we show that polarons are delocalized in not only the intra- but also the interchain direction, leading to intermolecular transitions which correspond well to experimental absorption features at the lowest energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call