Abstract

We study the impurity problem in a Fermi gas of 173Yb atoms near an orbital Feshbach resonance (OFR), where a single moving particle in the 3P0 state interacts with two background Fermi seas of particles in different nuclear states of the ground 1S0 manifold. By employing wave function ansatz to molecule and polaron states, we investigate various properties of the molecule, the attractive polaron, and the repulsive polaron states. In comparison to the case where only one Fermi sea is populated, we find that the presence of an additional Fermi sea acts as an energy shift between the two channels of the OFR. In addition, quantum fluctuations near the Fermi level can also induce sizable effects to various properties of the attractive and repulsive polarons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.