Abstract

Luminescence properties of colloidal quantum dots have found applications in imaging, displays, light-emitting diodes and lasers, and single photon sources. Despite wide interest, several experimental observations in low-temperature photoluminescence of these quantum dots, such as the short lifetime on the scale of microseconds and a zero-longitudinal optical phonon line in spectrum, both attributed to a dark exciton in literature, remain unexplained by existing models. Here we propose a theoretical model including the effect of solid-state environment on luminescence. The model captures both coherent and incoherent interactions of band-edge exciton with phonon modes. Our model predicts formation of dressed states by coupling of the exciton with a confined acoustic phonon mode, and explains the short lifetime and the presence of the zero-longitudinal optical phonon line in the spectrum. Accounting for the interaction of the exciton with bulk phonon modes, the model also explains the experimentally observed temperature-dependence of the photoluminescence decay dynamics and temperature-dependence of the photoluminescence spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.