Abstract

By means of a 2-D tight-binding model with lattice relaxation in a first-order expansion, we report different polaron properties depending on the armchair graphene nanoribbons width family as well as on its size. We find that representatives of the 3p+2 family do not present a polaronic-mediated charge transport. As for 3p and 3p+1 families, the polaron behavior was completely dependent on the system's width. In particular, we observed a greater degree of delocalization for broader nanoribbons; narrower nanoribbons of both families, on the contrary, typically presented a more localized polaronic-type transport. Energy levels and occupation numbers analysis are performed to rigorously assess the nature of the charge carrier. Time evolution in the scope of the Ehrenfest molecular dynamics was also carried out to confirm the collective behavior and stability of the carrier as a function of time. We were able to determine that polarons in nanoribbons of 3p family present higher mobility than those in 3p+1 nanoribbons. These results identify the transport process that takes place for each system, and they allow the prediction of the mobility of the charge carriers as a function of the structural properties of the system, thus providing guidance on how to improve the efficiency of graphene nanoribbon-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.