Abstract

Charge transport in conjugated polymers has been investigated using Monte Carlo simulations implemented on top of the Marcus theory for donor-acceptor transition rates. In particular, polaron effects and the dependency of the mobility on the temperature and the applied electric field have been studied. The conclusions are that while the qualitative temperature dependence is similar to that predicted by Miller-Abrahams theory in the Gaussian disorder model (GDM), the electric field dependence is characterized by a crossover into the Marcus inverted region, not present in the GDM. Furthermore, available analytical approximations to describe the electric field dependence of the mobility in Marcus theory fail to fit the simulation data and hence cannot be used to directly draw conclusions about the importance of polaron effects for charge transport in conjugated polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.