Abstract

Electron spin resonance (ESR) features in heavily doped conjugated polymers are investigated through the comparison of temperature dependences of ESR spectra between head-to-tail coupled regioregular (RR) and regiorandom (RRa) poly(3-octylthiophenes) (P3OTs). RR-P3OT, used as a model of having crystalline grains in the solid film, is found to exhibit anisotropic ESR spectra, whereas RRa-P3OT gives almost isotropic ESR spectra similar to those of usual heavily doped conjugated polymers. This difference in the degree of spectral anisotropy primarily arises from a difference in their film morphology. Spectral simulations show the anisotropy observed in RR-P3OT to be caused by g-anisotropy. The presence of the g-anisotropy in RR-P3OT indicates that its polarons spend most of the time within a single crystalline grain that has some domains with a common direction of the g-tensor. The g-anisotropy turns out to decrease with increasing temperature. This result is explained by thermally activated hopping motions between crystalline grains. We emphasize that the decrease in the g-anisotropy with temperature should be associated with its activated type of temperature dependence of conductivity. In RRa-P3OT, its isotropic ESR spectra are suggested to be caused by the interchain motion as well as the intrachain one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.