Abstract
The dynamical properties of polarons in organic molecular crystals are numerically studied in the framework of an one-dimensional Holstein-Peierls approach that includes lattice relaxation. Particularly, the present study is aimed at designing a tight-binding Hamiltonian that can address the charge transport mechanism in model oligoacene stacks. Our findings show that the definition of a particular oligoacene system depends strictly on the employed set of parameters. The usefulness of this methodology is highlighted by analyzing the polaron's saturation velocity and, consequently, its stability in the presence of a damping term and substantially high electric field strengths. Importantly, these results may be useful for the designing of novel materials to be employed in the field of molecular electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.