Abstract
The origin of the stability of bulk Nanobubbles (NBs) has been the object of scrutiny in recent years. The interplay between the surface charge on the NBs and the Laplace pressure resulting from the surface tension at the solvent-NB interface has often been evoked to explain the stability of the dispersed NBs. While the Laplace pressure is well understood in the community, the nature of the surface charge on the NBs has remained obscure. In this work, we aim to show that the solvent and the present ions can effectively polarize the NB surface by inducing a dipole moment, which in turn controls the NB stability. We show that the polarizability of the dispersed gas and the polarity of the dispersing solvent control the dipole-induced dipole interactions between the solvent and the NBs, and that, in turn, determines their stability in solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.