Abstract

A three-dimensional polarized X-ray fluorescence (XRF) spectrometer was assembled with a low-power X-ray tube of 40 milliwatts, and a sample of stainless steel was measured with an acrylic polarizer. Based on the Schrodinger’s wave picture of Compton scattering, the dependence of the de Broglie wavelength and the scattering angle of a recoil electron on the incident X-ray energy were calculated. When the incident X-rays were scattered at an angle of 90°, the de Broglie of the recoil electron always went away at an angle of 45° with the incident X-rays and the de Broglie wavelength varied for any wavelength of the incident X-rays, i.e. we could select the scattering angle of the recoil electron to be 45°according to the incident X-ray energy and it could then be regarded as 45° Bragg diffraction that could produce highly polarized X-rays. The polarization measurement of scattered X-rays from an acrylic and lead plates substantiated that Compton scattered X-rays from the acrylic plate had higher degree of polarization than the elastically scattered X-rays from the lead plate. Highly polarized Compton scattered X-rays from the light-element polarizer led to the background reduction and the changes of the characteristic X-ray intensity in XRF spectra measured by our laboratory-made spectrometer. Key words: polarized X-ray fluorescence spectrometer, stainless steel, acrylic polarizer, Compton scattering, background. DOI: http://dx.doi.org/10.15826/analitika.2018.22.2.010

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call