Abstract
AbstractRecent advances in the development of polarized terahertz (THz) emission from nanomaterials have not only opened up a new “TeraNano” interdiscipline but also provided a new tool for nonlinear optical process research. Herein, THz radiation mechanism of monolayer tungsten disulfide (WS2) is first investigated by both linear and circular polarization laser excitations at room temperature. The results reveal that polarized THz emission is dominated by the optical rectification based on in‐plane nonlinear dipoles, which is totally different from that of bulk WS2. The mechanism is verified by the azimuthal angle and pump polarization angle dependence of THz emission in both experiment and theory. Furthermore, controllably elliptically polarized THz emission is observed with the maximum ellipticity of ≈0.52 based on nonresonant nonlinear process under the circularly polarized excitation. A clear understanding of THz radiation mechanism of 2D materials will facilitate further design, optimization, and polarization control of integrable 2D THz optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.