Abstract

Two families of cell-adhesion molecules, predominantly presynaptic neurexins and postsynaptic neuroligins, are important for the formation and functioning of synapses in the brain, and mutations in several genes encoding these transmembrane proteins have been found in autism patients. However, very little is known about how neurexins are targeted to synapses and which mechanisms regulate this process. Using various epitope-tagged neurexins in primary hippocampal neurons of wild-type and knock-out mice in vitro and in transgenic animals in vivo, we show that neurexins are trafficked throughout neurons via transport vesicles and the plasma membrane insertion of neurexins occurs preferentially in the axonal/synaptic compartment. We also observed that exit of neurexins from the ER/Golgi and correct targeting require their PDZ-binding motif at the C terminus, whereas two presumptive ER retention signals are inactive. The ubiquitous presence of neurexin-positive transport vesicles and absence of bassoon colabeling demonstrate that these carriers are not active zone precursor vesicles, but colocalization with CASK, RIM1alpha, and calcium channels suggests that they may carry additional components of the exocytotic machinery. Our data indicate that neurexins are delivered to synapses by a polarized and regulated targeting process that involves PDZ-domain mediated interactions, suggesting a novel pathway for the distribution of neurexins and other synaptic proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.